1.加油站里的汽油为什么分这么多种类?

2.汽油不同的标号有什么区别?

3.加油站的93#汽油的93#指的是什么?

汽油辛烷值测定方法_车用汽油辛烷值测量方法

辛烷值越高抗爆性越差如下:

辛烷值是衡量汽油性能的重要指标之一,它表示的是汽油在发动机中燃烧时的抗爆性能。一般来说,辛烷值越高,汽油的抗爆性就越差,但这并不意味着辛烷值越低,汽油的抗爆性就越好。

辛烷值的高低是通过实验测定得出的,具体方法是使用四冲程发动机在一定转速和负荷下,以不同辛烷值的汽油为燃料进行燃烧,记录下发动机发生爆震的最高辛烷值。因此,辛烷值越高,表示汽油在发动机中燃烧时越容易发生爆震,抗爆性就越差。

抗爆性是指汽油在发动机中燃烧时抵抗爆震的能力,它是汽油燃烧性能的重要指标之一。如果汽油的抗爆性不好,就会在发动机中产生强烈的爆震声,严重时会损坏发动机,导致汽车无法正常运行。

然而,并不是辛烷值越低,汽油的抗爆性就越好。如果汽油的辛烷值过低,可能会导致发动机无法正常运转或者出现其他问题。因此,在选择汽油时,需要根据车辆的具体情况和要求选择适合的辛烷值。

此外,需要注意的是,不同厂家的汽油辛烷值可能会有所不同,而且辛烷值也受到炼油工艺和原油质量等多种因素的影响。因此,在选择汽油时,需要选择正规渠道的合格汽油,并按照车辆使用说明书的要求进行使用,以保证车辆的正常运转和延长发动机的使用寿命。

加油站里的汽油为什么分这么多种类?

汽油在气缸中正常燃烧时火焰传播速度为10~20m/s,在爆震燃烧时可达1500~2000m/s。后者会使气缸温度剧升,汽油燃烧不完全,机器强烈震动,从而使输出功率下降,机件受损。与辛烷有同一分子方程式的异辛烷,其震爆现象最少,我们便把其辛烷值定为100。常以标准异辛烷值规定为100,正庚烷的辛烷值规定为零,这两种标准燃料以不同的体积比混合起来,可得到各种不同的抗震性等级的混合液,在发动机工作相同条件下,与待测燃料进行对比。抗震性与样品相等的混合液中所含异辛烷百分数,即为该样品的辛烷值。汽油辛烷值大,抗震性好,质量也好。 把汽油中不同种类碳氢化合物的百分比,与其辛烷值相乘,加起来便是该种汽油的辛烷值。

不同化学结构的烃类,具有不同的抗爆震能力。异辛烷(2,2,4-三甲基戊烷)的抗爆性较好,辛烷值给定为100。正庚烷的抗爆性差,给定为0。汽油辛烷值的测定是以异辛烷和正庚烷为标准燃料,按标准条件,在实验室标准单缸汽油机上用对比法进行的。调节标准燃料组成的比例,使标准燃料产生的爆震强度与试样相同,此时标准燃料中异辛烷所占的体积百分数就是试样的辛烷值。依测定条件不同,主要有以下几种辛烷值:

①马达法辛烷值 测定条件较苛刻,发动机转速为900r/min,进气温度149°C。它反映汽车在高速、重负荷条件下行驶的汽油抗爆性。

②研究法辛烷值 测定条件缓和,转速为600r/min,进气为室温。这种辛烷值反映汽车在市区慢速行驶时的汽油抗爆性。对同一种汽油,其研究法辛烷值比马达法辛烷值高约0~15个单位,两者之间差值称敏感性或敏感度。

③道路法辛烷值 也称行车辛烷值,用汽车进行实测或在全功率试验台上模拟汽车在公路上行驶的条件进行测定。道路辛烷值也可用马达法和研究法辛烷值按经验公式计算求得。马达法辛烷值和研究法辛烷值的平均值称作抗爆指数,它可以近似地表示道路辛烷值。

北京兰铂高科

如何依据马达法和研究法测定汽辛烷值?

其中最著名的是要数俄罗斯科学院生产的RASX-100M辛烷值测定仪,它广泛的应用在世界各地.其测量方法符合国际标准:辛烷值测量符合: ASTM D 2699-86, ASTM D 2700-86。

辛烷值测定仪测量原理

辛烷值测定仪的原理在于对汽油的辛烷值和柴油的十六烷值的绝缘导磁率和电磁感应的电荷特性测定测量出来的。通过测量样品的电介质特性,同已知的存在内存里的参数相比较,从而测定出结果。仪器十分敏感,可以测得微小的电介质参数变化.从而可以检测辛烷值,十六烷值等石油产品参数。

其主要特点有,

更加全面综合的精确的测量石油产品的各种数据

可重复的误差范围为0.5个辛烷值单位,带温度校正

绝对误差接近静态测量值,小于0.5个辛烷值单位.

可以对各种含添加剂的汽油进行测量

同时显示RON,MON和抗爆指数(AKI). AKI=(RON+MON)/2.

测量柴油的十六烷值,柴油类型及凝结温度

汽油不同的标号有什么区别?

汽油是按辛烷值的高低以标号来区分的,辛烷值是表示汽油抗爆性的指标。常用的辛烷值测定方法有两种:马达法和研究法,两种方法测出的数值是不一样的。我国用研究法测定的数值,93号汽油表示它的辛烷值不低于93#,余此类推。发动机根据压缩比的不同选用不同标号的汽油,如果高压缩比的发动机使用不适合的低标号的汽油,就会产生爆震。

柴油是柴油汽车、拖拉机等柴油发动机的燃料,也称轻柴油。同车用汽油一样,柴油也有不同的标号,不同的是汽油标号由辛烷值确定,而划分柴油标号的依据则是柴油的凝固点。目前国内应用的轻柴油按凝固点分为6个标号:5#柴油、0#柴油、-10#柴油、-20#柴油、-35#柴油和-50#柴油。选用不同标号的柴油应主要根据使用时的气温决定。

一般来讲,5#柴油适合于气温在8℃以上时使用;0# 柴油适用于气温在8℃至4℃时使用;-10#柴油适用于气温在4℃至-5℃时使用;-20#柴油适用于气温在-5℃至-14℃时使用;-35#柴油适用于气温在-14℃至-29℃时使用;-50#柴油适用于气温在-29℃至-44℃或者低于该温度时使用。

专家表示,选用柴油的标号如果不适合使用温度区间,发动机中的燃油系统就可能结蜡,堵塞油路,影响发动机的正常工作。柴油的标号越低,结蜡的可能性就越小,当然价格也就越高。在适用于一个标号柴油的温度区间内而选用低一级标号的柴油当然更好。

加油站的93#汽油的93#指的是什么?

汽油的标号表示的是辛烷值。

辛烷值(Octane Number)是交通工具所使用的燃料 (汽油) 抵抗震爆的指标。汽油内有多种碳氢化合物,其中正庚烷在高温和高压下较容易引发自燃,造成震爆现象,减低引擎效率,更可能引致汽缸壁过热甚至活塞损裂。因此正庚烷的辛烷值定为零,而异辛烷其震爆现象很小,其辛烷值定为100。其他的碳氢化合物也有不同的辛烷值,有可能小于0(如正辛烷),也有可能大于100(如甲苯)。因此,汽油中的辛烷值则直接取决于汽油内各种碳氢化合物的成分比例。

测定方法

目前测试车用汽油抗爆性的方法很多,归纳总结主要有以下几种。

马达法

一种燃料的马达法辛烷值是在标准操作条件下,将该燃料的参比与已知辛烷值的参比燃料混合物的爆震倾向相比较而确定的。具体的做法是借助于改变压缩比,并用一个电子爆震表来测量爆震强度而获得标准爆震强度。?[2]?

研究法

一种燃料的马达法辛烷值是在标准操作条件下,将该燃料的参比与已知辛烷值的参比燃料混合物的爆震倾向相比较而确定的。具体的做法是借助于改变压缩比,并用一个电子爆震表来测量爆震强度而获得标准爆震强度。?[3]?

目前车用汽油国家标准中规定检测车用汽油抗爆性的方法用研究法辛烷值测试法(GB/T 5487-1995)和马达法辛烷值测试法(GB/T 503-1995)。测试标准条件不同是研究法辛烷值测试法和马达法辛烷值测试法最主要的区别。两种测试方法都是在各自的标准操作条件下,用电子爆震表测定被测燃料和已知参比燃料的爆震强度,然后将被测燃料的爆震倾向与已知辛烷值的参比燃料的爆震倾向相比较来确定被测燃料的辛烷值。具体的做法可以用内插法和压缩比法。?[4]?

内插法

在单缸机压缩比保持不变的情况下,使被测燃料的爆震表读数位于两个已知辛烷值的参比燃料(辛烷值之差不能大于 2)的爆震表读数之间,然后再用内插法计算公式计算被测燃料的辛烷值。内插法计算公式如下:

式中:X-被测车用汽油的辛烷值;

A-参比燃料(高辛烷值)对应的辛烷值;

B-参比燃料(低辛烷值)对应的辛烷值;

a-参比燃料(高辛烷值)对应的平均爆震表读数;

b-参比燃料(低辛烷值)对应的平均爆震表读数;

c-被测车用汽油的平均爆震表读数。

压缩比法

用参比燃料标定出发动机的标准爆震强度,然后换用被测燃料,通过调整气缸高度(压缩比),使被测燃料的爆震强度与参比燃料的爆震强度相同,记录此时的气缸高度,然后查表得出被测燃料的辛烷值。?[4]?

红外光谱法

研究法辛烷值测试法和马达法辛烷值测试法均无法满足生产过程中在线测试要求,同时在实际测试燃料辛烷值的过程中,上述两种方法还具有测试速度慢,测试费用非常高和有害污染物排放多等缺点。目前快速检测燃料辛烷值的方法有红外光谱法、气象色谱法和核磁共振光谱法等。由于具有成本低廉、测试速度快、测试过程中不会产生排放污染和测试消耗被测燃料少等优点,红外光谱法逐渐成为车用汽油辛烷值测定的主流技术。红外光谱法的基本原理就是利用红外光谱测定车用汽油中的不同组分和各组分所占的比例,然后根据各组分对辛烷值的贡献情况,分析计算得出被测车用汽油的辛烷值。?[5]?

行车法

由于实验室法所测定的辛烷值不能完全反映汽车在道路上行驶时汽油的实际抗爆能力,一些国家还用行车法来评定汽油的实际抗爆性能,用该方法所测出的辛烷值,称为道路辛烷值。因为行车法比较复杂,实际应用时多用经验公式计算而得。经验公式如下:

修正联合法道路辛烷值

按该式计算得道路法辛烷值,其数值介于马达法辛烷值和研究法辛烷值之间。目前我国车用汽油国家标准尚未对车用汽油道路法辛烷值做出规定?[4]?

介电常数法辛烷值

汽油的辛烷值不同其介电常数?也不同,辛烷值大的汽油介电常数也大,如果能测定介电常数,就可以计算出辛烷值,介电常数的变化可用电容的容值变化来测定。该方法设备体积小、低功耗、价格低、具有温度补偿,便于野外作业。实现的电路简单可靠,但存在无法测量汽油中加入有机溶质的局限性

提高经济性能

辛烷值是表示汽化器式发动机燃料的抗爆性能好坏的一项重要指标,列于车用汽油规格的首项。汽油的辛烷值越高,抗爆性就越好,发动机就可以用更高的压缩比。也就是说,如果炼油厂生产的汽油的辛烷值不断提高,则汽车制造厂可随之提高发动机的压缩比,这样既可提高发动机功率,增加行车里程数,又可节约燃料,对提高汽油的动力经济性能是有重要意义的。?

保护环境

针对原油和汽油的输送,不但要求对输送油品进行标号识别,还要求对输送期间产生混合油的情况进行监控,准确掌握管道内的情况以确保油品的输送和管理。针对原油加工,实时掌握加工油品的辛烷值,可以合理地控制炼油厂加工汽油的辛烷值不断提高,对原油的利用具有重要意义。此外,汽油的辛烷值与汽油的化学组成,特别是汽油中烃类分子结构有密切关系。测定加有抗爆剂的汽油的辛烷值,可估量抗爆剂的效果,找出适宜的抗爆剂加入量,提高汽油的燃烧质量,保护环境。

93号汽油代表辛烷值高低

辛烷值是表示汽油抗爆性的指标,车用汽油是按照其辛烷值的高低以标号来区分的。目前最常用的辛烷值测定方法有两种:马达法和研究法,两种方法测出的数值不一样。现在我国车用汽油的标号用研究法测定数值,93#汽油表示它的辛烷值不低于93#,依此类推。我们应该根据发动机压缩比的不同选用不同标号的汽油。如果高压缩比的发动机使用不合适的低压缩比的汽油,就会产生爆震。如果低压缩比的发动机使用高标号汽油,车辆动力将滞后,而且造成浪费。